Acta Cryst. (1963). 16, 784

Interpretation of Monoclinic Powder X-ray Diffraction Patterns*

By W. H. ZACHARIASEN

Department of Physics, University of Chicago, Consultant to Los Alamos Scientific Laboratory, U.S.A.

(Received 1 November 1962)

The procedure used to index the monoclinic powder diffraction patterns of alpha and of beta plutonium metal is described.

This paper describes in some detail the procedure which was used to index the monoclinic powder X-ray diffraction patterns of alpha and of beta plutonium. The approach to the indexing problem is most simple and direct. No novel principles are involved, no computational aids are required, and only the most elementary knowledge of lattice geometry is needed. The practical use of the procedure will be illustrated with alpha plutonium as an example.

It is convenient to give the experimental data in the form of $\sin^2 \theta_i$ (or $\sin^2 \theta_i/\lambda^2$ or $4 \sin^2 \theta_i/\lambda^2$). Using the symbol $S_i \equiv \sin^2 \theta_i$ one has for monoclinic symmetry:

$$S_i = H_i^2 A_1 + K_i^2 A_2 + L_i^2 A_3 + 2H_i L_i A_{13} = T_i + K_i^2 A_2 \quad (1)$$

where

$$A_{1} = \lambda^{2}/4a_{1}^{2}\sin^{2}\beta, \ A_{2} = \lambda^{2}/4a_{2}^{2}$$

$$A_{3} = \lambda^{2}/4a_{3}^{2}\sin^{2}\beta, \ A_{13} = -\lambda^{2}\cos\beta/4a_{1}a_{3}\sin^{2}\beta.$$
(2)

Finding a_2

In any extensive set of data S_i will be many pairs S_i, S_j corresponding to reflections $(H_iK_iL_i)$ and $(H_iK_jL_i)$. For such pairs

* Work done in part under the auspices of the U.S. Atomic Energy Commission.

Accordingly one looks for recurrent values of differences $S_i - S_j$. For a primitive translation lattice the recurrent differences are $A_2, 3A_2, 4A_2, 5A_2, 7A_2 \ldots$ and for a centered translation lattice

 $(A, C, I) 4A_2, 8A_2, 12A_2, 16A_2, 20A_2 \ldots$

It is thus possible from inspection of differences $S_t - S_f$ to deduce the axis a_2 and to distinguish between a primitive and a centered translation lattice.

It is clearly true that the greater the accuracy of the experimental data the smaller is the probability of finding fortuitous recurrences in the set $S_i - S_j$.

Equation (3) does not hold for triclinic lattices. If recurrent differences are found, one can accordingly conclude that the symmetry is monoclinic rather than triclinic. (It is tacitly assumed that the possibility of symmetry higher than monoclinic was eliminated in advance.)

Example: α -Pu

Table 1 lists observed intensities and observed values $S_i = 10^5 \sin^2 \theta_i$ for the first 60 lines of the α -Pu pattern as obtained with a Norelco Diffractometer and Cu $K\alpha$ radiation. The maximum error in the S_i values is +5.

Table 1. X-ray diffraction data for alpha plutonium metal

			5 55		J			
\mathbf{Line}	Inten-		Line	Inten-		Line	Inten-	
no.	$_{ m sity}$	$S_i = 10^5 \times \sin^2 \theta_i$	no.	$_{ m sity}$	$S_i = 10^5 \times \sin^2 \theta_i$	no.	$_{ m sity}$	$S_i = 10^5 \times \sin^2 \theta_i$
1	7	4637	21	42	11425	41	12	18169
2	7	6261	22	8	11737	42	70	18446
3	4	6482	23)	95	12582	43	3	18758
4	27	6981	24 👔	20	12628	44	6	18923
5	7	7043	25 Ĵ	10	13900	45	95	19079
6	56	7187	26)	10	13961	46	31	20259
7	13	7377	27	37	14399	47	8	20547
8	122	7690	28	5	14583	48	17	21086
9	64	7737	29	5	15431	49	16	21558
10	105	8244	30	13	15633	50	10	21932
11	12	8804	31	16	15869	51	8	22563
12	152	8878	32	13	16208	52	11	22842
13	15	9032	33	16	16362	53	12	23091
14	11	9601	34	13	16518	54	4	24233
15	12	9922	35	19	16954	55	10	24405
16	246	10211	36	13	17125	56	36	24601
17	284	10290	37	6	16257	57	8	24940
18	121	10794	38	7	17594	58	6	25228
19	86	10924	39	17	17701	59	21	25630
20	15	11352	40	39	17948	60	11	25829

Table 2. Recurrent differences $S_i - S_j$

i	j	$S_i - S_j$	i	j	$S_i - S_j$	i	$_{j}$	$S_i - S_j$
6	1	2550	37	14	7656	16	0	10211
11	2	2543	38	15	7672	37	5	10214
13	3	2550	40	17	7658	38	7	10217
14	5	2558	42	18	7652	40	9	10211
15	7	2545	45	21	7654	42	10	10202
17	9	2553	49	25	7658	45	$\tilde{12}$	10201
18	10	2550	53	29	7660	49	20	10206
21	12	2547	56	35	7647	50	$\overline{22}$	10195
25	20	2548				52	$24^{$	10214
34	26	2557				56	27	10202
35	27	2555				59	29	10199
36	28	2542				60	30	10196
41	30	2536						10100
43	32	2550						
44	33	2561						
46	39	2558						
53	47	2544						
59	53	2539						

When all possible differences $S_i - S_j$ are formed, one finds pronounced recurrences at 2550, 7657 and 10207 as shown in Table 2. Since these are in the ratio 1:3:4, a primitive monoclinic lattice with $A_2=2552$ and $a_2=4.82$ Å is suggested.

Identifying potential H0L reflections

Determination of the unique axis a_2 in effect reduces the indexing problem from three to two dimensions. One should be in position to assign the correct index K_i to each diffraction line and to find the corresponding values $T_i = S_i - K_i^2 A_2$ which represent potential reflections from (H0L) planes.

It must be remembered, however, that any experimental set S_i is incomplete. In the α -Pu case, for example, only 60 of the first 120 possible diffraction lines were actually observed. Hence one cannot expect to be able to deduce the values K_i and T_i for every diffraction line.

Any T_i -value that has been found implies the existence of other values $T_j = n^2 T_i$ corresponding to

Table 3. Values $T_i = S_i - K_i^2 A_2$

Line	S_i		$S_i - A_2$		$S_{i} - 4A_{3}$	$S_i - 9A_2$	\mathbf{Line}	S_i		$S_i - A_2$		$S_i - 4A_i$		$S_{i} - 9A_{3}$
no.	$K_i = 0$		$K_i = 1$		$K_i = 2$	$K_i = 3$	no.	$K_i = 0$		$K_i = 1$		$K_i = 2$		$K_i = 3$
1	4637		2085			ĺ	31	15869	or	13317	or	5663		
2	6261		3709				32	16208		13656		6002		
3	6482		3930				33	16362		13810		6156		
4	6981		4429				34	16518		13966		6312		
5	7043		4491				35	16954		14402		6748		
6	7187		4635				36	17125		14573		6919		
7	7377		4825				37	17257		14705		7051		
8	7690		5138				38	17594		15042		7388		
9	7737		5185				39	17701		15149		7495		
10	8244		5692				40	17948		15396		7742		
11	8804		6252			l	41	18169		15617		7963		
12	8878		6336			1	42	18446		15894		8240		
13	9032		6480				43	18758		16206		8552		
14	9601		7049				44	18923		16371		8717		
15	9922		7370				45	19079		16527		8873		
16	10211		7659		$5 \approx 0$		46	20259		17707		10051		
17	10290		7738		84		47	20547		17995		10341		
18	10794		8242		588		48	21086		18534		10880		
19	10924	\mathbf{or}	8372	or	718		49	2158		19006		11352		
20	11352		8800		1146		50	21932		19380		11726		
21	11425		8873		1219		51	22563	or	20011	\mathbf{or}	12357		
22	11737		9185		1531		52	22842		20290		12636		
23	12582	or	10030	\mathbf{or}	2376		53	23091		20539		12885		128
24	12628		10076		2422		54	24233	or	21681	or	14027	or	1270
25	13900		11348		3694		55	24405	or	21853	or	14199	or	1442
26	13961		11409		3755		56	24601		22049		14395		1638
27	14399		11847		4193		57	24940	or	22388	or	14734	or	1977
28	14583		12031		4377		58	25228		22676		15022		2265
29	15431		12879		5225		59	25630		23078		15424		2667
30	15633		13081		5427	l	60	25829		23277		15623		2866

higher order reflections from the same (H0L) plane. If a given T_i -value corresponds to a reflection of order m > 1, then other possible values are

$$T_j = n^2 T_i / m^2 \tag{4}$$

which should be sought out.

Example: α -Pu

In Table 3 are listed, for each datum S_i , all possible values $S_i - K_i^2 A_2$, with the selected T_i -values printed in bold-face type.

Recurrence is the obvious criterion for the selection of a T_i -value. For lines 4 and 8 the T_i -values are taken to be 4429 and 5138 because 4×4429 and 4×5138 are recurrent values $S_i - K_i^2 A_2$. Line 16 is assumed to represent the reflection (020) because $S_i \simeq 4A_2$. It is seen that the recurrent value 6480 = 4×1620 and $14578 = 9 \times 1620$, suggesting that 1620is also a possible value T_i . Similarly $4635 = 9 \times 515$, $8242 = 16 \times 515$, $12882 = 25 \times 515$, $18534 = 36 \times 515$ and $25228 = 49 \times 515$, thus giving the additional T_i values of 515 and $2060 = 4 \times 515$ in accordance with equation (4).

With the limited data at hand it is not possible to decide for lines 19, 23, 31, 51, 54, 55 and 57 which is the correct choice of K_i and T_i . However, the analysis of the data of Table 3 has given 26 distinct T_i -values, and these are listed in ascending order in Table 4.

Table 4. Deduced T_i -values

No.	T_i	No.	T_i
1	515	14	11350
2	1620	15	11737
3	$2060 = 4 \times 515$	16	12628
4	4427	17	$12879 = 25 \times 515$
5	$4635 = 9 \times 515$	18	13966
6	5137	19	14399
7	6252	20	$14578 = 9 \times 1620$
8	$6480 = 4 \times 1620$	21	15624
9	7049	22	16207
10	7377	23	16367
11	7738	24	$17704 = 4 \times 4426$
12	$8242 = 16 \times 515$	25	$18534 = 36 \times 515$
13	8878	26	$20543 = 4 \times 5136$

Indexing the possible H0L reflections

The procedure described in the preceding section will have led to a set of quantities T_i corresponding to

reciprocal lattice vectors (H0L), and it can be assumed in general that the set T_i so obtained is far from complete. (The T_i -values listed in Table 4 for the α -Pu example are for instance only two-thirds complete.)

Consider a set of four T_i -values corresponding to reciprocal lattice points with correct Miller indices as follows: (H_10L_1) , (H_20L_2) , $(H_2-H_1, 0, L_2-L_1)$ and $(H_2+H_1, 0, L_2+L_1)$. The *T*-values satisfy the condition.

$$2(T_{H_10L_1} + T_{H_2}0_{L_2}) = T_{H_2 - H_1, 0, L_2 - L_1} + T_{H_2 + H_1, 0, L_2 + L_1}.(5)$$

Such a set will be called a tetrad and the quantity

$$\pm n = \begin{vmatrix} H_1 & L_1 \\ H_2 & L_2 \end{vmatrix}$$

will be referred to as the order of the tetrad.

It is always possible to choose a new set of axes in reciprocal space, \mathbf{b}_1' and \mathbf{b}_3' , defined by

$$p\mathbf{b}_{1} = H_{1}\mathbf{b}_{1} + L_{1}\mathbf{b}_{3}$$
$$q\mathbf{b}_{3} = H_{2}\mathbf{b}_{1} + L_{2}\mathbf{b}_{3} \tag{6}$$

(where p and q are suitably chosen integers) by means of which all reciprocal lattice points can be generated. If

$$\begin{vmatrix} H_1 & L_1 \\ H_2 & L_2 \end{vmatrix} = \pm 1 ,$$

one can set p=q=1, and the new vectors \mathbf{b}'_1 , \mathbf{b}'_3 will form a primitive set. On the other hand, if

$$\left\| \begin{array}{cc} H_1 & L_1 \\ H_2 & L_2 \end{array} \right\| > 1$$
 ,

either p or q or both > 1, and the resulting vector set $\mathbf{b}'_1, \mathbf{b}'_3$ may not be primitive.

Any set of four experimental T-values (as deduced by the process described in the preceding section) satisfying the condition

$$2(T_i + T_j) = T_k + T_l \tag{7}$$

is a possible tetrad. If the set forms a true tetrad (*i.e.* if equation (7) is not satisfied merely by chance), one can (in accordance with equation (5)) index the four corresponding reciprocal lattice points as (p00), (00q), $(p0\overline{q})$, (p0q), and in the process cell dimensions a'_1, a'_3, β' are determined.

The practical procedure is first to set p=q=1.

No.	i	j	$2(T_i + T_j)$	k	l	$T_k + T_l$	a_1	a_3	β	N/n
I	2	5	12510	6	10	12514	6·18 Å	3.66 Å	101·8°	16/3
II	3	4	12974	2	14	12970	9.08	6.18	143.7	8
III	2	6	13514	5	13	13513	6.51	3.65	111.6	16/3
IV	1	7	13534	8	9	13529	10.78	3.08	94.6	8
v	1	8	13990	7	11	13990	10.96	3.09	101.7	8
νī	ĩ	9	15128	7	13	15130	11.41	3.09	110.2	8
VII	ĩ	10	15784	4	14	15777	23.30	6.18	152.6	16
viii	ī	ñ	16506	6	14	16487	17.20	4.43	141.3	11.5
TX	2	7	16624	11	13	16610	5.39	3.08	94.6	4

Table 5. Possible tetrads: $2(T_i+T_j)=T_k+T_l$

Table 6. Indexing of T_i -values for the various tetrads Tetrads

No.	T_i	$_{H0L}^{\rm I}$	$_{H0L}^{\rm II}$	$_{H0L}^{\rm III}$	IV_{H0L}	V H0L	VI H0L	$_{H0L}^{\rm VII}$	$\begin{array}{c} \text{VIII} \\ H0L \end{array}$	\mathbf{IX}_{H0L}	$\begin{array}{c} \operatorname{Correct} \\ H0L \end{array}$
$\frac{1}{2}$	$\begin{array}{c} 515\\ 1620\end{array}$	(100)	(101)	(100)	(100)	(100)	(100)	$(100) \\ 30\overline{1}$	(100)		001 100
3 4	2060 4427	()	(100) (001)	~ /	200	200	200	200	200	(100)	$002 \\ 102$
5	4635	(001)	(001)	$(10\overline{1})$	300	300	300	300 601	300 (101)		003
0 7	6252	(101)	<u> 207</u>	(001)	(001)	$(10\overline{1})$	$(10\overline{1})$	$70\overline{2}$	(101)	(001)	201 201
8 9	6480 7049	200	$\frac{202}{302}$	200	(101) (101)	201	(001)	$802 \\ 80\overline{2}$			200 $20\overline{2}$
10 11	7377 7738	(101)		201	$20\overline{1}$	(101)	3 01	$\begin{array}{c} (001) \\ 50\overline{2} \end{array}$	(001)	(101)	$\begin{array}{c} 103 \\ 201 \end{array}$
12 13	$8242 \\ 8878$	201	200	(101)	$\begin{array}{c} 400 \\ 201 \end{array}$	400 301	400 (101)	$\begin{array}{c} 400\\ 90\overline{2} \end{array}$	400	200 (101)	$\begin{array}{c} 004\\ 20\overline{3} \end{array}$
14	11350 11737		(101)	()	301	401	201	(101)	(101)	(/	104
16	12628		402		501	±01	201	801	500		
17 18	$12879 \\ 13966$				500	500	500	500 10,0, <u>3</u>	500		$30\overline{1}$
$\frac{19}{20}$	$\frac{14399}{14578}$	300		300				11,0, <u>3</u> 90 3			302 300
$\frac{21}{22}$	$15624 \\ 16207$				401	$50\overline{1}$	301	$11,0,\overline{2}$ $80\overline{3}$		201	$\begin{array}{c} 20\overline{5} \\ 301 \end{array}$
23 24	16367		002		501	401	601	$\frac{201}{20\overline{2}}$			$105 \\ 204$
25 26	185 34 2054 3	002	$300 \\ 50\overline{2}$	002	600 501	600 601	600 401	$600 \\ 12,0,\overline{2}$	$\begin{array}{c} 600\\ 20\overline{2} \end{array}$	300	006 206

If the selected tetrad is a true one and of order 1, the trial cell so obtained will be capable of explaining all observed data.

In general the chosen tetrad will be of order |n| > 1, and the trial cell corresponding to p=q=1 will then be able to explain only 1/n of the observed T_i -values. Accordingly one must try out the various combinations $p=1, 2, 3, \ldots, q=1, 2, 3, \ldots$ until one finds a set of small integers p, q which makes possible the indexing of all reflections.

The cell arrived at by the procedure just described may not be primitive, and in general it will not correspond to a conventional choice of axes. However, the reduction to a primitive set a_1, a_3 chosen in accordance with conventions is a trivial task.

If the density is known, the content of any trial cell obtained with p=q=1 can be computed. For any true tetrad the trial cell must contain N/n molecules, where N is the number of molecules in the correct cell.

It is obvious that an extensive set of experimental T-values will yield many tetrads, and that any one of them (which is not fortuitous) can be used for the indexing.

α -Pu

The list of T_i -values deduced for α -Pu is given in Table 4. In searching for tetrads it should be remembered that each datum of Table 4 is precise to ± 5 or better. Accordingly a possible tetrad will be regarded as acceptable only if the two sides of equation (7) differ by less than 20. The data of Table 4 lead to a great many possible tetrads. The nine corresponding to the smallest values of T_k+T_l are listed in Table 5 together with the

 Table 7. Correct indices for the first sixty

 diffraction lines

Line			\mathbf{Line}		
no.	S_i	HKL	no.	S_i	HKL
1	4637	003, 012	31	15869	$30\overline{3}, 213$
2	6261	$20\overline{1}$	32	16208	301
3	6482	200	33	16362	105
4	6981	112	34	16518	$31\overline{1}$
5	7043	$20\overline{2}$	35	16954	$31\overline{2}$
6	7187	013	36	17125	310
7	7377	103	37	17257	$22\overline{2}$
8	7690	$11\overline{3}$	38	17594	123
9	7737	201	39	17701	204
10	8244	004	40	17948	$221, 10\overline{6}$
11	8804	$21\overline{1}$	41	18169	$21\overline{5}$
12	8878	$20\overline{3}$	42	18446	024
13	9032	210	43	18758	311
14	9601	$21\overline{2}$	44	18923	115
15	9922	113	45	19079	$22\overline{3}$
16	10211	020	46	20259	214
17	10290	211	47	20547	$20\overline{6}$
18	10794	014	48	21086	016
19	10924	114	49	21558	124
20	11352	104	50	21932	$22\overline{4}$
21	11425	$21\overline{3}$	51	22563	303
22	11737	$20\overline{4}$	52	22842	$12\overline{5}$
23	12582	212	53	23091	$025, 205, 21\overline{6}$
24	12628	$10\overline{5}$	54	24233	321, <u>1</u> 07
25	13900	114	55	24405	$31\overline{5}$
26	13961	$30\overline{1}$	56	24601	$32\overline{2}$
27	14399	$30\overline{2}$	57	24940	116
28	14583	300	58	25228	007
29	15431	015	59	25630	215
30	15633	$20\overline{5}$	60	25829	$22\overline{5}$

dimensions of the trial cells for p=q=1 and the cell content calculated from the experimental density of 19.8 g.cm⁻³.

Table 6 shows the observed T_i -values which can be indexed for each of the nine tetrads. It is seen that tetrad no. VII can explain every observed T_i -value (and, indeed, with the previously found axis a_2 , all S_i -values of Table 1).

The indexing problem is thus solved, with the cell

$$a'_1 = 23 \cdot 30, a_2 = 4 \cdot 82, a'_3 = 6 \cdot 18 \text{ A}, \beta' = 152 \cdot 6^{\circ}.$$

However, the choice of axes is unconventional. It is customary to select the two shortest lattice vectors in the XZ plane as the vectors \mathbf{a}_1 and \mathbf{a}_3 . Accordingly one chooses new axes defined by $\mathbf{a}_1 = \mathbf{a}'_3$, $\mathbf{a}_3 = \mathbf{a}'_1 + 3\mathbf{a}'_3$ giving

 $a_1 = 6 \cdot 18, a_2 = 4 \cdot 82, a_3 = 10.96 \text{ Å}, \beta = 101 \cdot 8^\circ.$

The corresponding transformations for Miller indices are: H = L', L = H' + 3L'.

The last column of Table 6 gives the indices of the T_i -values referred to the conventional cell. The correct

index assignment for the first sixty lines of the diffraction pattern is shown in Table 7.

Only one (VIII) of the possible tetrads given in Table 5 is incorrect, corresponding to chance fulfilment of the tetrad relation of equation (7). The other tetrads of Table 5 are of order |n| > 1, so that one has to choose pq > 1. The p and q values required for complete indexing are as follows:

Tetrad no.	p	q
I	1	3
II	2	1
III	3	3
IV	2	2
v	1	2
VI	1	2
\mathbf{IX}	4	4

The cells obtained with these p and q values are primitive for tetrads I, II, V, VI, doubly primitive for tetrads IV and IX and triply primitive for tetrad III. However, in all instances the correct cell is obtained by simple axis transformation.

Acta Cryst. (1963). 16, 788

Die Kristallstruktur des Tetramethylammonium-Disilberjodids*

VON HANS-JÜRGEN MEYER

Mineralogisch-Petrologisches Institut der Universität Bonn/Rhein, Deutschland

(Eingegangen am 8. Januar 1962 und wiedereingereicht am 7. September 1962)

The compound $N(CH_3)_4Ag_2I_3$ belongs to the space group Pnam (D_{25}^{b}) and has the lattice parameters $a = 17 \cdot 7_7$, $b = 10 \cdot 07_1$, $c = 7 \cdot 43_7$ Å; Z = 4 molecules. The structure contains tetrahedrally coordinated double chains $[Ag_4I_6]_{00}^{2-}$ parallel to [001], similar to those in $CsAg_2I_3$ and $CsCu_2Cl_3$. The $N(CH_3)_4^+$ complexes are surrounded by 12 I atoms.

1. Darstellung und makroskopische Eigenschaften

Tetramethylammonium-Disilberjodid, $N(CH_3)_4Ag_2J_3$, gehört zu einer Klasse von Komplexsalzen mit organischen Kationen, die in neuerer Zeit von Kuhn & Schretzmann (1955, 1957; vgl. auch Datta & Ghosh, 1914) durch Reaktionen in Dimethylformamid erhalten wurden. Eine Probe dieser Substanz wurde freundlicherweise durch Herrn Prof. Kuhn zur Verfügung gestellt. Eine grössere Substanzmenge wurde als Ausgangsprodukt für Kristallisationsversuche auf folgende Weise gewonnen: Vereinigt man eine heisse, gesättigte Lösung von AgJ in konz. Jodwasserstoffsäure mit einer konz. wässrigen Lösung von $N(CH_3)_4J$, so fällt $N(CH_3)_4Ag_2J_3$ in reichlichen Mengen aus. Durch Umkristallisieren aus Dimethylformamid (Hinweis von R. Kuhn) erhält man die Verbindung in völlig farblosen Nadeln des orthorhombischen Systems von meist 0,1–0,2 mm Dicke und wenigen mm Länge. Die morphologisch vorherrschende Kombination $\langle 100 \rangle$ + $\langle 110 \rangle$ bedingt einen pseudohexagonalen Habitus. Mikroskopisch waren an den Nadelenden noch $\langle 021 \rangle$ und weitere Formen erkennbar. Es besteht gute Spaltbarkeit nach (100). Die Kristalle sind recht spröde und zeigen plattig-splittrigen bis muschligen Bruch. Das fein gemörserte Pulver ist etwas lichtempfindlich (bräunlich-rosa Verfärbung). Die Dichte wurde nach der Schwebemethode (in $CH_2J_2 + CHJ_3$) zu $d \geq 3,34$ bestimmt.

Der optische Charakter ist positiv-zweiachsig in der Nadelrichtung, die Brechungsindices sind (für Na_D und 20 °C)

 $\alpha = 1,757; \beta = 1,770; \gamma = 1,912 (\pm 0,002);$

daraus errechnet sich der Achsenwinkel $2V_{\gamma}=37^{\circ}$. Orientierung: $\alpha \mid\mid [010], \beta \mid\mid [100], \gamma \mid\mid [001]$.

^{*} Vorgetragen auf der 39. Jahrestagung der Deutschen Mineralogischen Gesellschaft von 11.-17. 9. 1961 in Tübingen.